

Roland Dewitt 2017-02-28

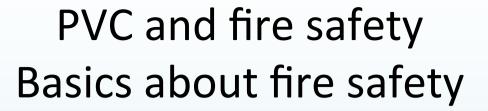
- Introduction
- Basics about fire safety
- Reaction to fire properties and PVC
- Testing
- Statistics about fire
- Recent topics
- Conclusion



PVC and fire safety Introduction

- Fire safety in general
 - Protection of life, environment, equipment
 - Material ≠ product ≠ system ≠ FSE
 - Passive + active measures
 - Risk ≠ hazard
- Construction Products Regulation (305/2011)
 - Safety in case of fire (BWR2)
 - Decision on the classification of the reaction to fire performance of cables (2006/751/EC, repealed by Delegated Regulation 2016/364)

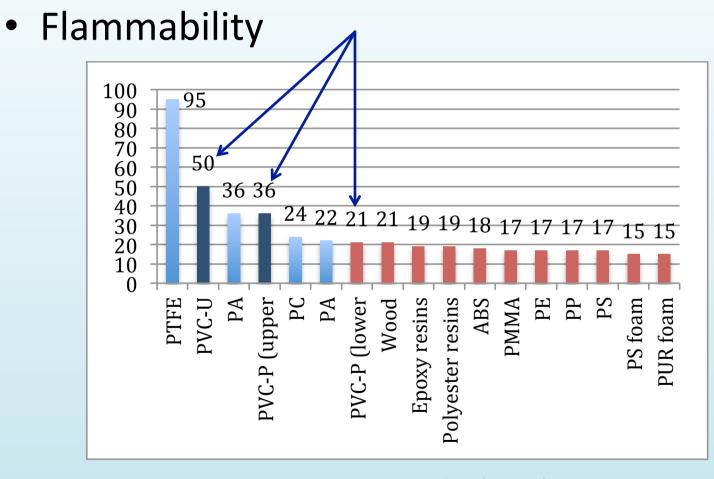
- Often heard about PVC, in case of fire:
 - PVC is plastics, thus it catches fire easily
 - PVC can rapidly propagate fire
 - PVC generates flaming droplets that can propagate fire
 - PVC generates dense smoke
 - PVC generates more toxic gases than other materials
 - PVC releases HCl that is particularly toxic
 - PVC smoke is corrosive



PVC and fire safety Introduction

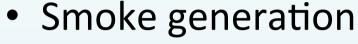
- Reality about PVC, in case of fire:
 - PVC is plastics, thus it catches fire easily \rightarrow NO
 - PVC can rapidly propagate fire → NO
 - PVC generates flaming droplets that can propagate fire → NO
 - PVC generates dense smoke → YES/NO
 - PVC generates more toxic gases than other materials → NO
 - PVC releases HCl that is particularly toxic → NO
 - PVC smoke is corrosive → YES/NO

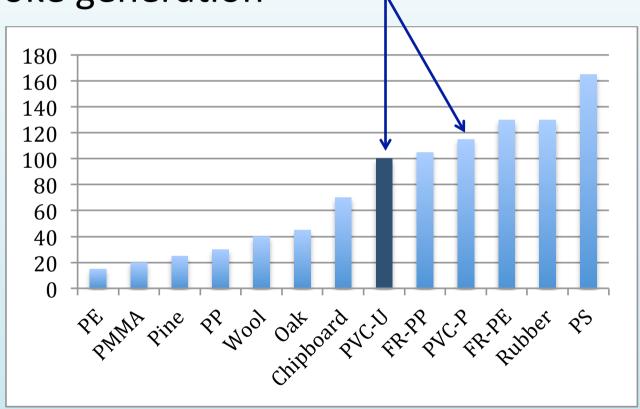
- Fire safety objectives
 - Safety of life
 - Conservation of property
 - Continuity of business operations
 - Protection of the environment
 - Preservation of heritage
- Parameters to consider: local situation, type and density of occupation, escape means, fire scenario, alarms, detectors, smoke exhaust...
- → Fire safety: a diverse and complex matter!



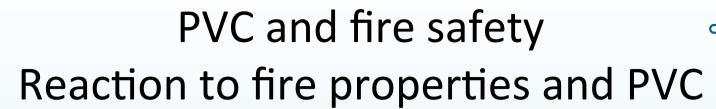
- Flammability
- Heat release
- Smoke generation
- Toxicity of fire gases
- Corrosive potency
- Flame propagation
- + charring
- + intumescence

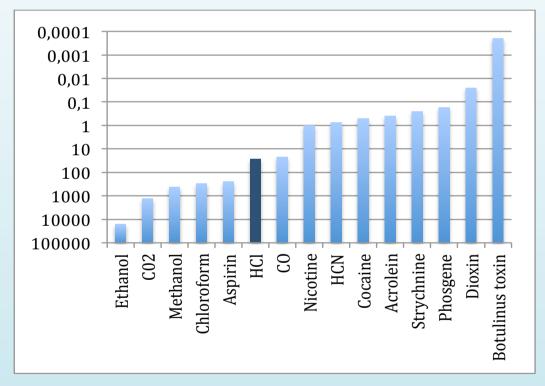
Limiting oxygen index (% O2)





Inferior calorific value (MJ/kg)




Estimate of smoke density under flaming conditions relative to PVC-U (%)

Toxicity of fire gases

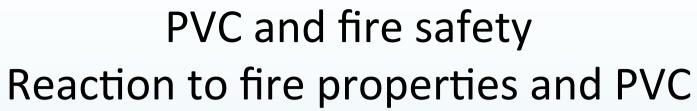
Toxic level of combustion gases compared with everyday materials (mg gas/kg body)

Toxicity of fire gases

ISO 13571:

Life-threatening components of fire — Guidelines for the estimation of time to compromised tenability in fires

ISO 13444:


Estimation of the lethal toxic potency of fire effluents

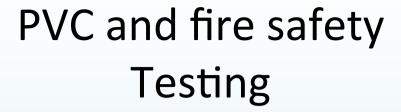
30 min LC50 values for rats (ppm vol), ISO 13344				
HCI	3800			
HBr	3800			
HF	2900			
NO ₂	170			
HCOH	750			
SO ₂	1400			
Acrolein	150			
CO HCN	5700 165			

5 / 1) 1: 1 -					
	F (ppm vol) according to				
ISO 13571 (FEC model)					
HCl	1000				
HBr	1000				
HF	500				
NO_2	250				
HCOH	250				
SO_2	150				
Acrolein	30				

Page 12

- Flammability
- Heat release
- Smoke generation
- Toxicity of fire gases
- Corrosive potency
- Flame propagation
- + charring
- + intumescence

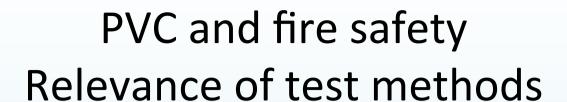
- ☑ High Oxygen Index
- ☑ Low calorific value
- Medium range
- Medium range
- ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠
 ∠


 △
 ∠
 △
 ∠
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △

 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △
 △

 △
 △
 △
 △
 △
 △
 △
 △

 △
 △
- ✓ No flaming droplets (PVC-U: Self-extinguishing)
- ✓ Yes
- ✓ Yes (with additives)

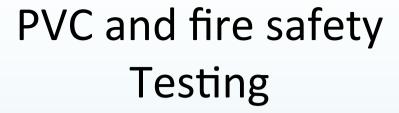


- Standardisation committees
 - ISO TC 92 (WG8 WG13 SC1 SC2 SC3 SC4)
 - CEN TC 127
 - IEC TC 89 (WG11 WG12)
 - IEC TC 20 (WG18)
 - CLC TC 20 (WG10)
- Not all characteristics at the same time
- Relevance of test methods and difficulty for scaling up characteristics

Exa	imple for	\		Product		System/installed	product
t	olastics	Material		Semi- finished product	Finished product	Large scale	Real scale
Sca	le of test	Bench	Small	Intermediate		Large	Real
Wha	at is seen	Matter	Matter Multilayer Charring Intumescence	Material Propagation Joints	Product Mounting Fixing Joints	Global Realistic environment System	System Real situation
Mai	n user	Compound developer	Compound supplier	Product supplier	Product supplier	Prime contractor Regulator	Prime contractor Regulator
	tion me spread	ISO 4589-2/3 ISO 9772 ISO 9773 ISO 12992 ISO 11925-1	ISO 5660-1	ISO 5658-2 ISO 5658 -4 ISO 21367	EN 13823	ISO 9705 ISO 13784-1/2	ISO 24473
Hea	at release		ISO 5660-1	ISO 21367	EN 13823	ISO 9705 ISO 13784-1	ISO 24473
Sm	oke		ISO 5659-2 ISO 5660-2	ISO 21367	EN 13823	ISO 9705	ISO 24473

ISO 15791-1: Plastics - Development and use of intermediate-scale fire tests for plastics products - Part 1: General guidance

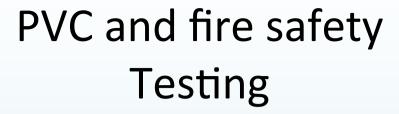
PVC and fire safety Relevance of test methods



Example for plastics

Applicability of test methods		Test m	plastics	
	ISO 9239-1 ISO 9239-2	ISO 5658-4	ISO 21367	ISO 14696
Preselection test	Only for flat products	yes	yes	yes
End product test	Only for horizontal flat products	Only for vertical product Adaptation of specimen for profiled product	Only for vertical product Adaptation of specimen for profiled product	Only for vertical product Adaptation of specimen for profiled product
Additional parameters	Possible presence of joints	Possible presence of joints	Possible presence of joints	Possible presence of joints
Ignitability	Yes	Yes	Yes	Yes
Spread of flame	Only lateral spread of flame	Lateral and vertical spread of flame	Lateral and vertical spread of flame	Vertical spread of flame
Ignited droplets	No	Yes	Yes	Yes
Heat release	No	No	Yes	Yes
Smoke opacity	Yes	No	Yes	Yes
Smoke toxicity	No	No	No	No

ISO/DTS 15791-2.2: Plastics - Development and use of intermediate-scale fire tests for products

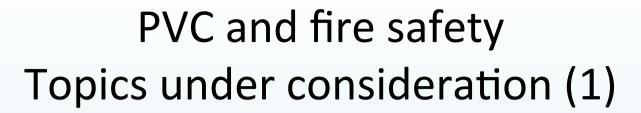


- Acidity ≠ corrosivity ≠ toxicity ≠ incapacitation
 - smoke acidity: pH level of fire effluents found in smoke condensate and smoke particles (ISO/NP 11907-1)
 - smoke corrosivity: measured effect of material or product reduction in functionality due to the corrosive effects of smoke (ISO/NP 11907-1)
 - smoke toxicity: impact of toxic gases to a given target (generally people) in a specific exposure scenario. In general, this concerns acute toxicity, as defined in ISO 13943 (ISO/NP 11907-1)
 - incapacitation: state of physical inability to accomplish a specific task, e.g. escape from a fire (ISO 13943)
 - tenability (opposite of incapacitation): ability of humans to perform cognitive and motor-skill functions at an acceptable level when exposed to a fire environment (ISO 13571)

- Acidity ≠ corrosivity ≠ toxicity ≠ incapacitation
 - IEC 60754: Test on gases evolved during combustion of materials from cables

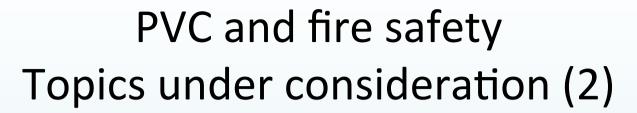
EU classification

- Part 1: Determination of the halogen acid gas content
 → material composition
- Part 2: Determination of acidity (by pH measurement)
 and conductivity corrosive potency
- Corrosivity linked to circuit integrity → also bridging by soot (quicker!)
- Toxicity: many chemicals involved, but CO is N°1
- Incapacitation: also thermal effect, O₂ depletion



PVC and fire safety Statistics about fire

- Fire safety is a political responsibility since it addresses safety of life first
- → where are the priorities
 - in term of situations?
 - in term of requirements ?
- Interest of statistics
 - ISO/TR 17755: Fire safety Overview of national fire statistics practices
 - In parallel, workable data could be collected from several countries



- Heat release vs fire conditions (small scale testing) (ISO TC 92 SC1)
 - e.g.: vitiated atmosphere, low combustibility, smouldering products
- Scaling up toxicity of fire effluents (ISO TC 92 SC3)
 - toxicity of fire effluents is very much dependent on fire conditions
 - additional difficulty for materials that char or sustain induced chemical reactions

- Tenability and lethality (ISO TC 92 SC3)
 - Discussion/confirmation with ref. to paradigms
- Sub-incapacitating effects (ISO TC 92 SC3)
 - CO and disorientation
 - smoke density
 - impact on human behaviour
- Burning behaviour of PVC construction products (ISO TC 61 SC4)
 - Development of a ISO/TR at ISO TC 61 SC4

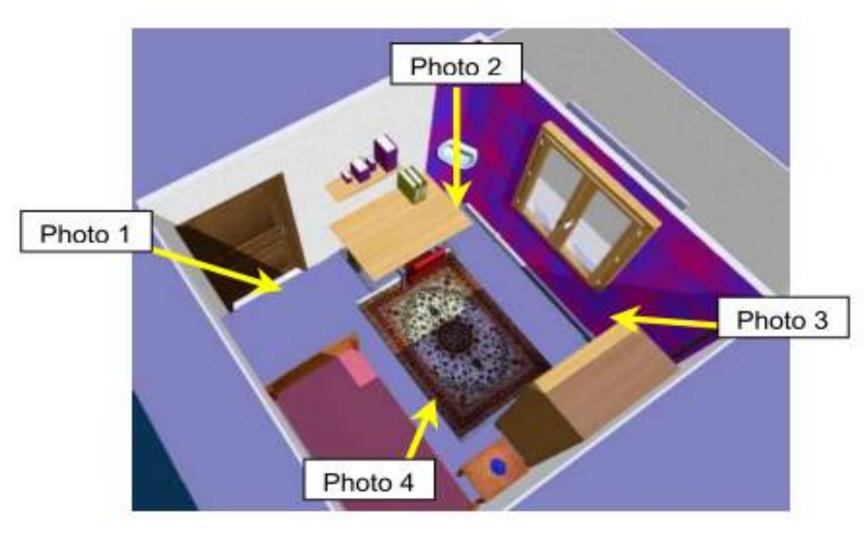
Real-scale fire tests and tenability assessment (LNE-LCPP)

Statistics

- 94 % fatalities come from dwelling fires (FR)
- 70% of victims in sleeping rooms and lounges (US)
- 70% of victims during the night (from 6 PM to 6 AM)
- cigarettes/smoking responsible of ⅓ of all domestic fires

Typical scenario

- 9 m² sleeping room for one person
- 2 common situations
- large presence of PVC products


Question:

What is the determining tenability parameter?

ec\m



Photo 3

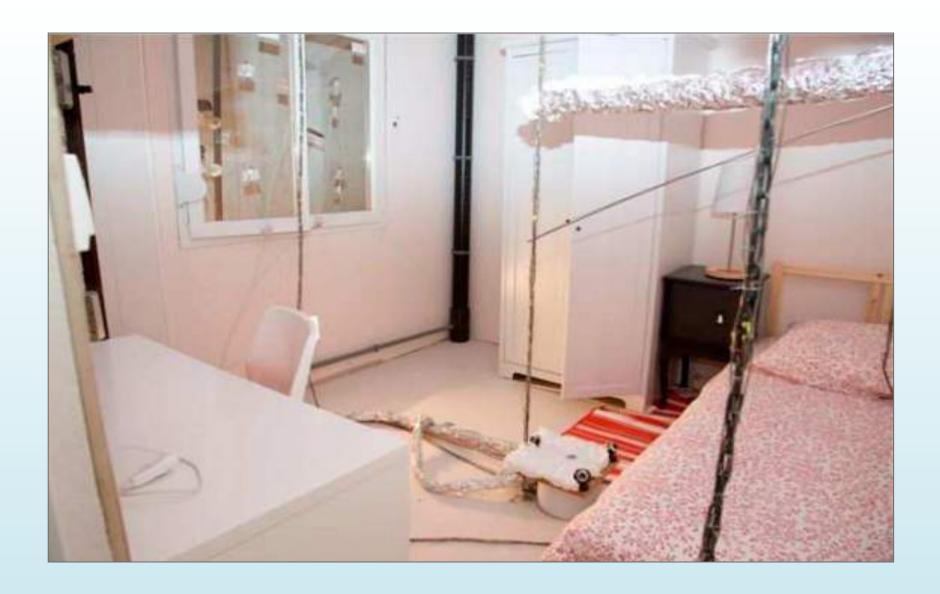


Photo 1

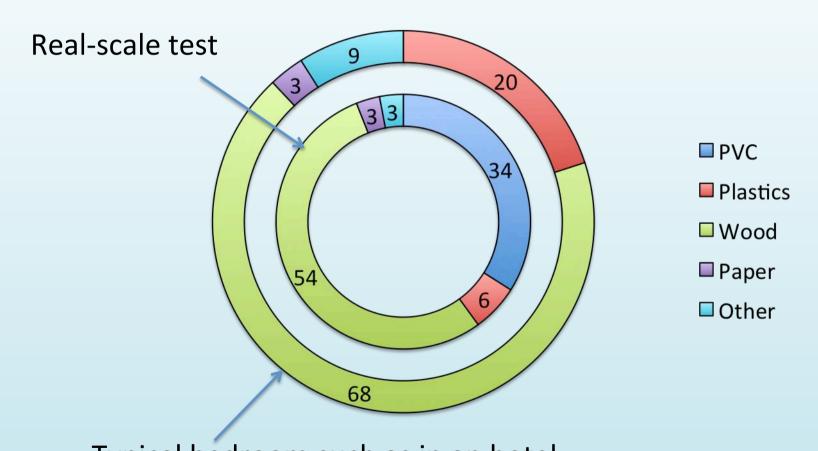
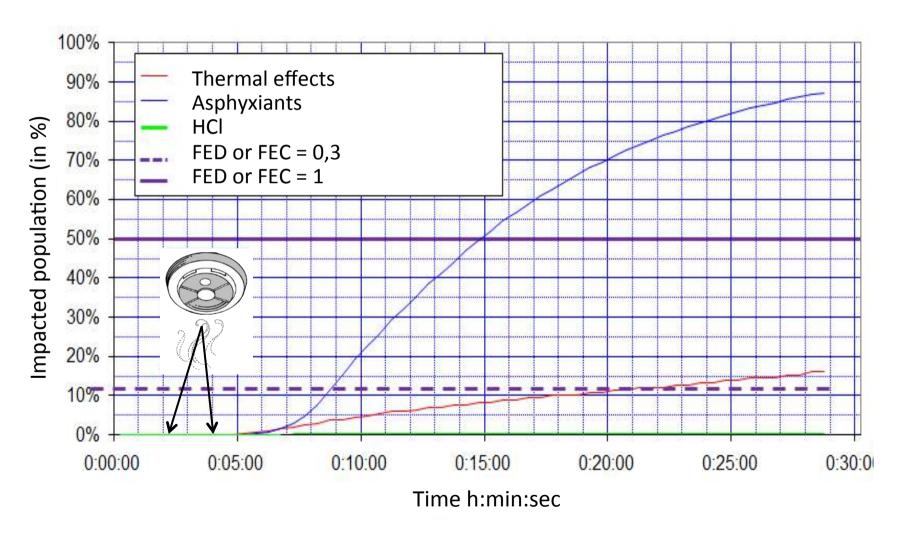
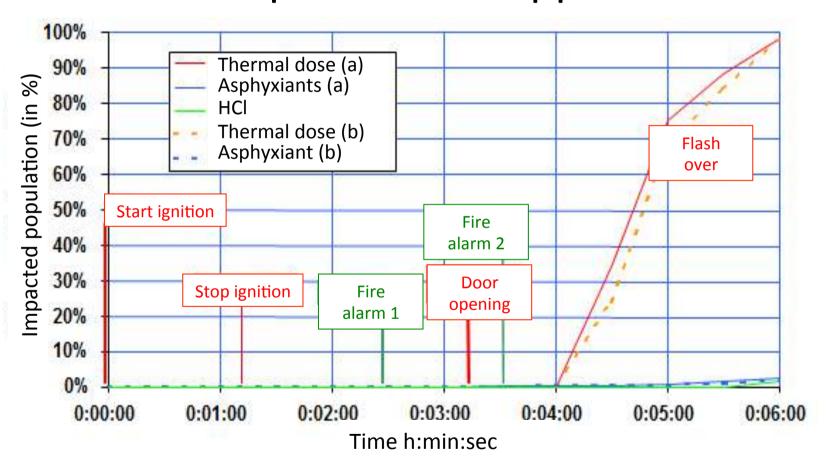


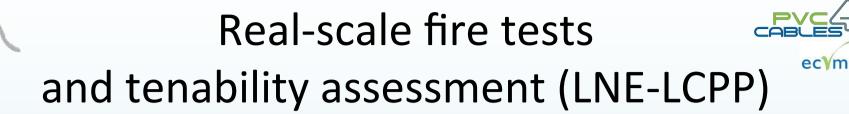
Photo 4

Material composition of the tested bedroom vs. typical bedroom



Typical bedroom such as in an hotel


Fire from quilt - Sleeping person Bedroom remaining closed



Fire from paper bin - Active person Bedroom opened after approx. 3 min

- Conclusion: HCl never compromises tenability
 - fire from quilt, sleeping person and room remaining closed
 - fire alarms \rightarrow OK \rightarrow waking up and escape possible
 - fire limited by ventilation
 - tenability: toxic effects of asphyxiant gases coupled with oxygen decay
 - thermal and irritants effects are negligible
 - fire from paper basket, active person, room opened after approx. 3 minutes
 - fire alarms → OK → escape possible
 - flash over a while after the door opening
 - tenability: thermal effects
 - toxicity of gases only after thermal effects

- PVC is difficult to ignite, moderately releases heat and does not sustain combustion
- PVC does not ease flame propagation
- PVC does not generate flaming droplets
- PVC does produce opaque smoke, but comparable to various other materials depending on the fire scenario
- PVC does not emit more toxic gases than many other materials
- Except in specific situations, the argument of acid gases impact is not valid, in particular in B&C

PVC4Pipes - 2017-02-28

Roland Dewitt

ACCIPIS sprl

roland.dewitt@waterloo.eu